Generate system files for the extended Lorenz-84 model¶
This Jupyter Notebook generates the system files for the extended Lorenz-84 model given by
In this system, \(X\) models the intensity of a baroclinic wave, \(Y\) and \(Z\) the sin and cos coefficients of the wave respectively, the variable \(U\) is added to study the influence of external parameters such as temperature. We fix the parameters as follows \(\alpha=0.25, \beta=1, G=0.25, \delta=1.04\) and \(\xi=0.987\). The continuation parameters are \(F\) and \(S\).
These are used in the extended Lorenz-84 model demo.
Add MatCont path and load sym package if GNU Octave is used¶
matcontpath = '../';
addpath(matcontpath);
addpath([matcontpath, 'Utilities'])
if isOctave
pkg load symbolic % for GNU Octave
end
Set the system name¶
system_name = 'extendedLorenz84';
Create coordinates and parameter names as strings¶
coordsnames = {'X', 'Y', 'Z', 'U'};
parnames = {'F', 'S'};
Create symbols for coordinates and parameters¶
The array par
is the array of symbols in the same order as parnames.
Due to the following two lines we may, for example, use either alpha
or
par(1)
. There should no changes be need of this code.
syms(parnames{:}); % create symbol for alpha and delta
par=cell2sym(parnames); % now alpha1 is par(1) etc
syms(coordsnames{:}); % create symbol for alpha and delta
coords=cell2sym(coordsnames); % create 1 x n vector for coordinates
Define fixed parameters¶
alpha = 0.25;
beta = 1;
G = 0.25;
delta = 1.04;
xi = 0.987;
Define the system¶
dX_dt = -Y^2-Z^2-alpha*X+alpha*F-xi*U^2;
dY_dt = X*Y-beta*X*Z-Y+G;
dZ_dt = beta*X*Y+X*Z-Z;
dU_dt = -delta*U+xi*U*X+S;
system = [dX_dt; dY_dt; dZ_dt; dU_dt];
In general there are no modifications needed after this line.
Differentiate and generate code (directional derivatives)¶
Exporting it to <system_name>.m
. This method uses directional derivatives.
Then using polarization identities derivatives can be calculated in arbitrary
direction.
suc = generate_directional_derivatives(...
system,... % n x 1 array of derivative symbolic expressions
coords,... % 1 x n array of symbols for states
par,... % 1 x np array of symbols used for parameters
system_name,... % argument specifying the system name
[matcontpath, 'Systems/']... % directory to save to file
);
Higher-order parameter-dependent multi-linear form.¶
Exporting it to <system_name>_multilinearforms.m
. These multi-linear forms are
currently only used in the computation of the parameter-dependent center
manifold for the codimension two Bogdanov-Takens bifurcation.
order = 3;
suc = generate_multilinear_forms(system_name, system, coords, par, order, ...
[matcontpath, 'Systems/']);